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Abstract

This paper extends the Black-Scholes (B-S) call option pricing model and

compare the accuracy of the derived B-S model with original model. It ex-

pands the Taylor’s series and utilizes the Ito’s lemma to derive the third mo-

ment of Brownian motion. Then it tests the accuracy of the B-S model with

including the third moment by predicting the European call option of Interna-

tional Business Machine (IBM) and American Telephone and Telegraph (ATT)

for March 2021. For the purpose of comparison, I also test the model for IBM

from December 31, 1975 to December 31, 1976. All data is derived from

Yahoo finance and Wall Street Journal.

1 Introduction

The Black-Scholes model has been playing a very important role in the financial

market. The main purpose of this model is to construct a riskless portfolio tak-

ing positions in bonds (cash), option, and the underlying stock (9). An option is a

derivative, a contract that gives the buyer the right, but not the obligation, to buy

or sell the underlying asset by a certain date (expiration date) at a specified price

(strike price). There are two types of options: call options and put options (5).

Calls give the buyer the right, but not the obligation, to buy the underlying asset

at the strike price specified in the option contract. Investors buy calls when they

believe the price of the underlying asset will increase and sell calls if they believe

it will decrease (7). Puts give the buyer the right, but not the obligation, to sell the

underlying asset at the strike price specified in the contract (7). The writer (seller)

of the put option is obligated to buy the asset if the put buyer exercises their option.

Investors buy puts when they believe the price of the underlying asset will decrease

and sell puts if they believe it will increase. Also, we have American-style options

which can be exercised at any time prior to their expiration and European-style

options which can only be exercised on the expiration date. I work with European

style call option in this paper because it is easier to work.

In order to illustrate how call option works, I bring a sensible example. Assume a

stock option is for 100 shares of the underlying stock. Assume a trader buys one

call option contract on ABC stock with a strike price of $25. He pays $150 for the

option. On the option’s expiration date, ABC stock shares are selling for $35. The

buyer/holder of the option exercises his right to purchase 100 shares of ABC at
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$25 a share (the option’s strike price). He immediately sells the shares at the cur-

rent market price of $35 per share. He paid $2, 500 for the 100 shares ($25 ∗ 100)

and sells the shares for $3, 500 ($35 ∗ 100). His profit from the option is $1, 000

($3, 500−$2, 500), minus the $150 premium paid for the option. Thus, his net profit,

excluding transaction costs, is $850 ($1, 000 − $150). That’s a very nice return on

investment for just a $150 investment.

So, the question is: what is a fair price to charge for the option? The Black-Scholes

formula gives the price of the option, in terms of other quantities, which are as-

sumed known. This mathematical tool is used to calculate the theoretical value

of options using current stock prices, expected dividends, the option’s strike price,

expected interest rates, time to expiration and expected volatility. In this paper, we

are going to expand the Black-Scholes, B-S, model and compare the market prices

of call options with prices predicted by the expanded B-S option pricing model.

The B-S model for a call option is given by:

C0 = S0N(d1)−Xe−rTN(d2) (1)

which has been discussed extensively in the literature. In this equation C0 is Eu-

ropean call option, S0 is stock price, X is exercise price, r is risk-free interest rate

and T is time to expiration. The function N(·) is the cumulative distribution function

for a standard normal distribution. The probability that your random variable is less

than or equal to x is 0 < N(x) < 1. The inputs d1 and d2 are defined as follows:

d1 =
ln(

S0
X

)+(r+σ2

2
)T

σ
√
T

d2 =
ln(

S0
X

)+(r− (σ)2

2
)T

σ
√
T

where σ is the volatility. For any time interval of length d, the return on the un-

derlying security has a normal distribution with variance σ2d. The first part of the

equation 1, S0N(d1), is what we are going to get which is being weighted by some

type of a probability. The second part is what we are going to pay. The question is

are we going to exercise our option?
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It makes sense if the stock price worth more than the exercise price. The value of

the call option would be the value of the stock minus the exercise price discounted

back today. The higher the S0, the more likely people would exercise their option.

e−rT is discounting or the present value of the exercise price. When the volatility,

σ, goes up, d1 increases and d2 decreases. As a result, S0N(d1) goes up and

Xe−rTN(d2) goes down (i.e., the amount that we get increases and the amount

that we pay decreases) so that the value of the call option increases. The B-S

model is based on certain assumptions: (i) assuming stocks pay no dividends, (ii)

it assumes stock prices follow a random walk, (iii) it assumes no commissions and

transactions costs, (iv) the interest rate is constant, and (v) the volatility is constant

over time.

Definition 1. We say that a random process (Xt : t ≥ 0), is a Brownian motion

with parameters (µ, σ) if:

1. For 0 < t1 < t2 < · · · < tn−1 < tn, the increments (Xt2 − Xt1), (Xt3 −
Xt2),· · · , (Xtn −Xtn−1) are mutually independent.

2. For S > 0, we have Xt+S − Xt ∼ N(µS, σ2S), meaning increment has a

normal distribution with mean µS and variance σ2S.

3. Xt is a continuous function of t. We say Xt is a Brownian Motion with drift µ

and volatility σ, denoted by B(µ, σ).

At µ = 0 and σ = 1, we have a standard Brownian motion, Wt (3), which is zero at

initial time (t = 0) (4).

Lemma 1. If Xt = f(Bt) is a function of Brownian Motion, then its differential is as

follows:

dXt = f
′
(Bt)dBt +

1

2
f
′′
(Bt)dt (2)

in which we assumed that the function is twice continuously, and differentiable,

f ∈ C2. This stochastic chain rule is known as Ito’s Lemma (3).

Proof. The integrated form is as follows,
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∆Xt = Xt −X0 = f(Bt)− f(B0) =
n∑
k=1

[f(Btk)− f(Btk−1
)]. (3)

where [0, t] is divided into n intervals [t0, t1], ..., [tn−1, tn], t0 = 0 and tn = t.

Using Taylor’s series, f(b) − f(a)=f
′
(a)(b − a)+1

2
f
′′
(c)(b − a)2 for some c with

a < c < b.

In terms of Brownian Motion, we have

f(Btk)− f(Btk−1
)=f

′
(Btk−1

)(Btk −Btk−1
)+1

2
f
′′
(Btk−1

)(Btk −Btk−1
)2.

Put it in equation 3:

Xt −X0 =
∑n

k=1[f
′
(Btk−1

)(Btk −Btk−1
) + 1

2
f
′′
(Btk−1

)(Btk −Btk−1
)2]

=
∑n

k=1[f
′
(Btk−1

)(Btk −Btk−1
)] + 1

2

∑n
k=1[f

′′
(Btk−1

)(Btk −Btk−1
)2]

where n is large and n→∞. Then,

Xt −X0 =

∫ t

0

f
′
(Bs)dBs +

1

2

∫ t

0

f
′′
(Bs)dB

2
s (4)

since Xt = 0 at t = 0, f ′(B0) and f ′′(B0) would be zero. By taking the derivative

on both sides in 4 and using the fundamental theorem of calculus, equation 4 is

equal to equation 2. Also, dB2
t = dt which has proved in appendix (51).

2 Methodology

2.1 Taylor’s Series

In Lemma 1, we started looking at writing down a power series representation of a

function of Brownian Motion. So, what we need to do is come up with a more

general method for writing a power series representation for a function. We

consider two assumptions. The first assumption is that the function f(x) has a

power series representation about x = a given by

f(x) =
∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + .... (5)
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where cn are constants. Second, we need to assume that the function, f(x), has

derivatives of every order and that we can in fact find them all (1). Now that we

have assumed a power series representation exists, we need to determine what

the coefficients, cn, are. First, consider the case where x = a. This gives,

f(a) = c0.

All the terms except the first are zero. In order to find any of the other coefficients,

we can take the derivative of the function (and its power series) then plug in x = a.

We get,

f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + 4c4(x− a)3 + ...

f ′(a) = c1.

Now we can continue to get the second derivative,

f ′′(x) = 2c2 + 6c3(x− a) + 12c4(x− a)2 + ....

f ′′(a) = 2c2

which leads us to

c2 = f ′′(a)
2

.

Using the third derivative gives,

f ′′′(a) = 6c3

which leads us to

c3 = f ′′′(a)
3!

.

In general, a similar calculation yields

cn = f (n)(a)
n!

.

So, if a power series representation for the function f(x) about x = a exists, then

the Taylor series (2) for f(x) about x = a is,

f(x) =
∞∑
n=0

f (n)(a)

n!
(x−a)n = f(a)+f ′(a)(x−a)+f ′′(a)

(x− a)2

2!
+f ′′′(a)

(x− a)3

3!
+...

(6)

Assume that we have a smooth function f and a Brownian motion, Bt, such

that

f(Bt) = B2
t .
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Consider equation 6 with x = Bt and a = Bt − dBt. Then by taking the deriva-

tive of equation 6, we have the Taylor expansion of f(Bt) for some smooth f , as

follows

df(Bt) = f ′(Bt)dBt +
1

2
f ′′(Bt)(dBt)

2 +
1

3!
f ′′′(Bt)(dBt)

3 + ... (7)

With respect to the second property of Brownian motion 1, we can say dBt has a

standard normal distribution with mean zero and variance dt. Then, the expected

value of the second order, (dBt)
2, is approximately equal to the value dt. This

value is large enough to be relevant. By the same procedure, we are going to

show that the expected value of the third order, E(|dBt|3) has the size (dt)
3
2 which

is negligible compared with dt, since dt is much smaller than 1. However, in this

study, I want to include in the Taylor’s series the third derivative in order to answer

the following questions:

Research Questions:

1. How to construct a new B-S model by including the third mo-

ment?

2. Does this extra term help us to have a more accurate predic-

tion of stock prices in the future?

Lemma 2. Suppose we have some function f of Brownian motion, say f(Bt) = B2
t .

Then we have,

∫ t

0

d(B2
s ) = 2

∫ t

0

Bsd(Bs) (8)

and

B2
t = 2

∫ t

0

Bsd(Bs). (9)

Proof. We want to create the stochastic differential dft = d(B2
t ). By using a chain

rule, we have,

d(B2
s ) = 2Bsd(Bs). (10)
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Taking the integral from both sides of equation 10, it gives,

∫ t

0

d(B2
s ) = 2

∫ t

0

Bsd(Bs). (11)

Then
∫
df = f implies,

[B2
s ]
t
0 = 2

∫ t

0

Bsd(Bs). (12)

By putting in the bounds, we obtain

B2
t −B2

0 = 2

∫ t

0

Bsd(Bs). (13)

Since Bt is a Standard Brownian motion with mean 0, it is equal to zero at the

starting point, t = 0. So, equation 13 is

B2
t = 2

∫ t

0

Bsd(Bs) (14)

Dividing up the time interval [0,t] into sub-intervals of equal size t
n

, we can approx-

imate the integral in equation 14 as

2

∫ t

0

Bsd(Bs) ≈ 2
n−1∑
i=0

B

(
it

n

)(
B

(
(i+ 1)t

n

)
−B

(
it

n

))
. (15)

The difference term is the increments of the Brownian motion from one particular

partition point to the next. Based on the Brownian motion properties 1, this in-

crement is independent of the Brownian motion up to that point, or up to B( it
n

).

Also, this increment has mean zero. So, the summation consists of terms with

zero mean, forcing it to have zero mean. However, B2
t has mean t, because of the
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variance structure of Brownian motion, so 2BtdBt cannot be a differential of B2
t ,

because its integral does not even have the right expectation, t. However, in order

to get the right differential, we can start with (dBt)
2 and model it as

∫ t

0

(dBs)
2 ≈

n∑
i=1

(
B(

ti

n
)−B(

t(i− 1)

n
)

)2

. (16)

Let’s define Zn,i as,

Zn,i =
B( ti

n
)−B( t(i−1)

n
)√

t
n

(17)

then for each n, the sequence Zni is a set of identically independently distribution

(iid) normal N(0, 1). So, we can rewrite equation 16 as

∫ t

0

(dBs)
2 ≈ t

n∑
i=1

Z2
n,i

n
. (18)

Considering the law of large numbers, the right-hand side summation converges

to the expected value of Zni, which is 1. Therefore, we may assume
∫ t

0
(dBs)

2 = t,

or in differential form (dBt)
2 = dt. Then neglecting the orders higher than 2,

equation 7 changes to

df(Bt) = f ′(Bt)dBt +
1

2
f ′′(Bt)dt+ 0. (19)

Next, we consider B2
t . We can apply Ito’s lemma with X = Bt and f(Bt) = B2

t

and we have

d(B2
t ) = 2BtdBt + dt or B2

t = 2

∫ t

0

Bsd(Bs) + t (20)

which at least has the right expectation. In general if X is still a Brownian motion

B, then by lemma 1,
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df(Bt) = f ′(Bt)dBt +
1

2
f ′′(Bt)dt. (21)

Take (dBt)
3, given the partitioning of [0, t] into sub-intervals of equal size t

n
, we

can approximate the integral of (dBt)
3 as

∫ t

0

(dBs)
3 =

n∑
i=1

(
B(

ti

n
)−B(

t(i− 1)

n
)

)3

. (22)

But if we let Z3
n,i be

Z3
n,i =

B( ti
n

)−B
(
t(i−1)
n

)
√

t
n


3

=

(
B( ti

n
)−B( t(i−1)

n
)
)3

t
n

√
t
n

. (23)

We can rewrite the value for the integral of (dBt)
3 as

∫ t

0

(dBs)
3 ≈ t

√
t

n∑
i=1

Z3
n,i

n
√
n
. (24)

As a generalization, we can write it for the kth moment

∫ t

0

(dBs)
k ≈ t

k
2

n∑
i=1

Zk
n,i

n
k
2

. (25)

But since (dBt)
k gets much smaller as k increases, we ignore the contribution of

(dBt)
k, when k ≤ 3.

Definition 2. A (standard, one-dimensional) Brownian motion is a continuous,

adapted process B = [Bt,Ft; 0 ≤ t <∞], defined on some probability space

(Ω,F , P ), with the properties that B0 = 0 a.s. and for 0 ≤ s < t, the increment

Bt −Bs is independent of Fs and is normally distributed with mean zero and

variance t− s (6).
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Lemma 3. The expression
∑n

i=1
Zn,3i
n
√
n

can be bounded as follows,

1√
t
≤

n∑
i=1

Zn,
3
i

n
√
n
≤ t
√
t

n2
(26)

Proof. Previously, we defined Zn,i =
B( ti

n
)−B(

t(i−1)
n

)√
t
n

. Since B( ti
n

) and B( ti−t
n

) are

the standard Brownian motions (Wiener process 3), they have the variances ti
n

and ti−t
n

, respectively. So, Zn,i is,

Zn,i ∼=
ti
n
− ti−t

n√
t
n

≤
t
n√
t
n

=

√
t√
n

(27)

then we have,

n∑
i=1

Zn,
3
i

n
√
n
≤ n.

 t
n
.
√
t√
n

n
√
n

 , (28)

which gives,

n∑
i=1

Zn,
3
i

n
√
n
≤ n.

(
t
√
t

n3

)
=
t
√
t

n2
. (29)

Next step is to find the lower bound. Using Cauchy-Schwarz inequality

 n∑
i=1

aibi

2

≤

 n∑
i=1

a2
i

 n∑
i=1

b2
i

 (30)

with ai =
(
Zn,i√
n

) 1
2

and bi =
(
Zn,i√
n

) 3
2

yields,
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 n∑
i=1

Zn,
2
i

n

2

=

 n∑
i=1

(
Zn,i√
n

) 1
2

.

(
Zn,i√
n

) 3
2

2

(31)

 n∑
i=1

Zn,
2
i

n

2

≤

 n∑
i=1

Zn,i√
n

 .

 n∑
i=1

Zn,
3
i

n
√
n

 . (32)

In the next step, we use
∫ t

0
dBs to approximate the value for

∑n
i=1

Zn,i√
n

. We have

∫ t

0

dBs =
n∑
i=1

(
B(

ti

n
)−B

(
t(i− 1)

n

))
. (33)

Since Zn,i =
B( ti

n
)−B(

t(i−1)
n

)√
t
n

, then equation 33 becomes,

∫ t

0

dBs
∼=

 n∑
i=1

Zn,i√
n

√t (34)

then we have,

n∑
i=1

Zn,i√
n
∼=

1√
t

∫ t

0

dBs (35)

then we can rewrite
∫ t

0
dBs as,

n∑
i=1

Zn,i√
n
∼=

1√
t
(Bt −B0). (36)

Based on standard Brownian motion properties 1, Bt at initial time, t = 0, is equal

to zero, and we have,

n∑
i=1

Zn,i√
n
∼=
Bt√
t
. (37)
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Based on definition 2, the variance of Bt is t− s, which in this situation, s = 0 and

Bt approaches to t as n increases. Then, we have

n∑
i=1

Zn,i√
n
∼=
√
t. (38)

Getting back to equation 32, the left-hand side would goes to 1 as n increases,

and with equation 38, we have

1√
t
≤

n∑
i=1

(
Zn,

3
i

n
√
n

)
(39)

We have proved the lemma. Now if n ∼ t, e.g., by dividing [0, t] into n = t units,

equation 39 would be
∑n

i=1
Zn,3i
n
√
n
∼= 1√

t
. So, we can take

n∑
i=1

Zn,
3
i

n
√
n
∼=

1√
t

(40)

then we have,

∫ t

0

(dBs)
3 = t

√
t

 n∑
i=1

Zn,
3
i

n
√
n

 = t
√
t · 1√

t
= t (41)

or in differential form (dBt)
3 = dt.

Now we are going to include the third moment of Taylor’s series in the

Black-Scholes Model. The stock follows an exponential Brownian motion,

St = exp(σWt + µt). (42)

Then we can write Yt as
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Yt = σWt + µt (43)

therefore,

St = eYt .

Then the stochastic differential equation (SDE) for Yt is

dYt = σdWt + µdt. (44)

By Taylor’s series, we have

dSt =
dS

dy
dy +

1

2

d2S

dy2
(dy)2 +

1

3!

d3S

dy3
(dy)3 (45)

expanding equation 45 yields

dSt =
dS

dy
(σdWt + µdt) +

1

2

d2S

dy2
(σ2dt) +

1

3!

d3S

dy3
(σ3dt). (46)

Let’s have (dt)2 = 0, dWtdt = 0, (dWt)
2 = dt, (dWt)

3 = dt. Then equation 46 is

simplified as,

dSt =
dS

dy
σdWt +

(
µ
dS

dy
+

1

2

d2S

dy2
σ2 +

1

3!

d3S

dy3
σ3

)
dt. (47)

The exponential function is particularly pleasant as

f ′(Yt) = f ′′(Yt) = f ′′′(Yt) = f(Yt) = St. So, we can rewrite the stochastic

differential like

dSt = StσdWt +

(
µ+

σ2

2
+
σ3

3!

)
Stdt. (48)

Equation 48 holds when the interest rate is zero. However, in the real world, we
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cannot assume that interest rate is zero. When r is not zero, we should expect the

growth of cash. In order to remove the growth of cash we need to discount

everything. So, by introducing the discount process B−1
t , we can write down the

discounted stock as Zt = B−1
t St and a discounted claim B−1

t X. Then the new

SDE, including non-zero interest rate can be written as:

dZt = ZtσdWt +

(
µ− r +

σ2

2
+
σ3

3!

)
Ztdt. (49)

2.2 Black-Scholes Formula

Now we are going to write down the Black-Scholes formula for call option with

respect to the third moment. As we defined call option before, it is the right but not

the obligation to buy a unit of stock for a predetermined amount at a particular

exercise date, say T . Let k be the predetermined amount (strike price), then our

object would be max(ST − k, 0) or (ST − k)+. Based on equation 1, B-S model

would be

C0 = S0N

 log(S0

k
) +

(
r + σ2

2
+ σ3

3!

)
T

σ
√
T

−ke−rTN
 log(S0

k
) +

(
r − σ2

2
− σ3

3!

)
T

σ
√
T

 .

(50)

This is the Black-Scholes formula for pricing European call options with

considering the new drift term as (r + σ2

2
+ σ3

3!
). In the next section, we are going

to test the accuracy of our new B-S model and comparing the result with previous

results.

3 Data Analysis and Discussion

James and Larry (8) published a paper using the sample consists of daily closing

prices of all call options traded on the Chicago Board of Trade Options Exchange

for International Business Machines (IBM) from December 31, 1975 to December

31, 1976. They tried to empirically examine the B-S call option pricing model. For

the purpose of comparison, I used the same IBM data set for the same time

period. Option prices and prices of the stocks are taken from the Wall Street

Journal. For each option expiration date, we have a different riskless rate. The

riskless rates are within 1/2 of 1 percent of one another and given the lack of
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sensitivity of the call price to the riskless rate, our results would be virtually

identical had we used a single riskless return for a Treasury Bill with, say, one year

to maturity for all expiration date.

For each day, t, a numerical search routine is used to calculate an implied value of

σ for each option price. The numerical search routine finds implied values of σ in

the interval .0001 to .06. The range .0001 to .06 is large enough to include all

reasonable values of σ. Table 1 includes these values. I get these data from the

James and Larry (8).

Consider the IBM options traded on June 14. Panel A of Table 2 contains the

market prices of the options, panel B contains the implied values of σ, panel C

contains the B-S model prices based on an estimated value of σ, and panel D

includes the B-S model prices with the third moment. The $240 January option

has a market price $3.28 greater than the B-S model price while it is only $0.32

greater than our new B-S model price. As we can see from the results in table 2,

our new B-S model option pricing is working better than the previous B-S model.

The market price is only $0.32 larger than the new B-S model price. The

difference between results from previous and new B-S model is significant. By

considering the third moment of the Brownian motion, we can conclude that our

model becomes more precise.

I also consider the recent data for daily closing prices of all call options for IBM

and American Telephone and Telegraph (ATT) for March 2021. This data is

derived from Yahoo Finance. Yahoo finance provides the daily implied volatility for

each call options. I used forward dividend and yield as a proxy for risk free interest

rate. Table 3 and 4 include this data. Panel A in table 3 indicates the market

prices of call option for IBM in March 2021. Panel B shows the implied values of

IBM. Implied values are different for each day. It is ranged from 0.00 to 0.66. Panel

C indicates the predicted call option price calculating by original Black-Scholes

model. Panel D includes the call option prices for IBM predicted by the new

Black-Scholes model including the third moment. Consider the date 03/23/2021

in table 3. The market price of IBM for this specific date is $16.25. The predicted

call option price from original Black-Scholes model is $20.75 and the predicted call

option price from the new Black-Scholes model is $16.49. It is obvious that the

Black-Scholes model including the third moment of Brownian motion predicted the

market price of call option better than the Black-Scholes model ignoring the higher

moments.

Table 4 does the same thing as table 3 for the ATT call option prices. Panel B

shows the implied values which is ranged from 0.65 to 2.51. As we can see from

the result, both Black-Scholes models have poor predictions for ATT call option

prices. However, the new Black-Scholes model including the third moment of
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Brownian motion in panel D, did a better job. Consider the date 03/22/2021. The

market price for call options of ATT in panel A is $7.90. The predicted price by

original B-S model is $11.24 and by the new B-S model is $8.54. The difference

between the B-S model price and the market price is $3.34; however, the

difference between the new B-S model price and the market price is $0.64.
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Table 1: Sample Implied Values of Sigma for IBM
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Table 2: IBM Option Data for June 14, 1976
(S* is the current stock price)

Panel Exercise Price January July October 

  Market Prices   

Panel A $200   $62   

 $220   $42  $47.50  

 $240  $36.50  $23  $30.50  

 $260  $22  $7.13  $16.13  

 $280  $12  $0.94  $7  

  
Implied Values of 

Sigma   

Panel B $200   0.028412  

 $220   0.019312 0.018691 

 $240  0.015404 0.014725 0.015417 

 $260  0.012885 0.010658 0.012824 

 $280  0.011689 0.010158 0.01164 

  
Black-Scholes 
Model Prices   

Panel C $200   $61.23   

 $220   $48.38  $43.90  

 $240  $33.22  $22.53  $28.13  

 $260  $21.95  $8.42  $16.15  

 $280  $13.73  $1.90  $8.28  

  

Black-Scholes 
Model Prices With 

Third Moment   

Panel D $200   $62.36   

 $220   $42.57  $44.10  

 $240  $36.18  $22.78  $28.54  

 $260  $22.05  $7.05  $16.28  

 $280  $14.25  $1.36  $7.75  

     

 r(Annual) 5.90% 5.30% 5.60% 

 S* $255.85  $260.25  $258.03 
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Table 3: IBM Option Data for March, 2021
(S* is the current stock price)

Panel Exercise Price March Date 

  Market Prices  

Panel A $114  16.93 3/24/2021 

 $115  16.25 3/23/2021 

 $145  0.02 3/22/2021 

 $142  7.95 3/19/2021 

 $110  19.40 3/18/2021 

 $118  10.80 3/17/2021 

 $150  0.03 3/15/2021 

  Implied Values of Sigma  

Panel B $114  0.00 3/24/2021 

 $115  0.66 3/23/2021 

 $145  0.46 3/22/2021 

 $142  0.38 3/19/2021 

 $110  0.26 3/18/2021 

 $118  0.35 3/17/2021 

 $150  0.31 3/15/2021 

  
Black-Scholes Model 

Prices  

Panel C $114  17.83 3/24/2021 

 $115  20.75 3/23/2021 

 $145  0.03 3/22/2021 

 $142  2.07 3/19/2021 

 $110  21.86 3/18/2021 

 $118  14.98 3/17/2021 

 $150  0.61 3/15/2021 

  
Black-Scholes Model 

Prices with Third Moment  

Panel D $114  17.84 3/24/2021 

 $115  16.49 3/23/2021 

 $145  0.07 3/22/2021 

 $142  8.87 3/19/2021 

 $110  21.90 3/18/2021 

 $118  13.33 3/17/2021 

 $150  0.03 3/15/2021 

    

 r(Annual) 0.05  

 S* 131.27 3/24/2021 
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Table 4: ATT Option Data for March, 2021
(S* is the current stock price)

Panel Exercise Price March Date 

  Market Prices  

Panel A $20  4.25 3/24/2021 

 $22  7.90 3/22/2021 

 $20  10.00 3/19/2021 

 $35  0.01 3/18/2021 

 $25  4.80 3/15/2021 

 $26  5.16 3/8/2021 

  
Implied Values of 

Sigma  

Panel B $20  0.89 3/24/2021 

 $22  2.00 3/22/2021 

 $20  2.51 3/19/2021 

 $35  0.65 3/18/2021 

 $25  1.09 3/15/2021 

 $26  0.99 3/8/2021 

  
Black-Scholes Model 

Prices  

Panel C $20  10.32 3/24/2021 

 $22  11.24 3/22/2021 

 $20  13.68 3/19/2021 

 $35  0.91 3/18/2021 

 $25  6.08 3/15/2021 

 $26  4.02 3/8/2021 

  

Black-Scholes Model 
Prices with Third 

Moment  

Panel D $20  10.61 3/24/2021 

 $22  8.54 3/22/2021 

 $20  10.69 3/19/2021 

 $35  0.02 3/18/2021 

 $25  5.17 3/15/2021 

 $26  4.22 3/8/2021 

    

 r(Annual) 0.07  

 S* 29.99 3/24/2021 
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4 Conclusion and Recommendations

The main purpose of this research is to mathematically expand the B-S model

and empirically analyze it. In the original B-S model, the moments of Brownian

motion higher than 2, is considered zero (2). This directly affects the value of

inputs d1 and d2 in the model. In this research, we have shown that the third

moment of Brownian motion can affect the accuracy of the B-S model. We

answered our research question in section 2.1. In order to add the third moment,

(dBt)
3, we have used Brownian motion properties and Taylor’s series. We have

shown that (dBt)
3 can be approximately written as t

√
t
∑n

i=1
Zn,3i
n
√
n

.

Lemma 3 illustrates the boundary of
∑n

i=1
Zn,3i
n
√
n

. Then we prove that
∑n

i=1
Zn,3i
n
√
n

can

be approximately equal to 1√
t

which makes (dBt)
3 approximately equal to dt. After

plugging the third moment into B-S model, I empirically tested it using the daily

closing option price of IBM and ATT. As we can see the results in Table 2, 3, and

4, the option prices of the new B-S model in panel D predicts the real market

option prices much better than the original B-S model prices in panel C. It

indicates the important role of the third moment term in the accuracy of the model.

Therefore, it is necessary to include the third moment of the Brownian motion in

our model. However, since I have tested the new derived B-S model on only two

stock markets over a one-month time period, results drawn from this research

must be provisional.

Finally, our analysis sheds some light on the apparently profitable option trading

strategy of James and Larry (8). Our B-S model price exceeds their B-S model

price, and the differences are too large. For the future studies, I recommend

considering the higher moments of these Brownian motion into the model instead

of considering them as zero. We derived the general form of (dBs)
k in equation

25. It will help us to approximate the value for
∑n

i=1
Zn,ki

n
k
2

. Then, we can derive the

new B-S model with considering the higher moments of Brownian motion. Also, I

recommend utilizing a broader time period for the stock market data sets. It helps

the results to be more reliable.
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6 Appendix

6.1 Ito’s Lemma

From Lemma 1, we have

Xt −X0 =
n∑
k=1

[f
′
(Btk−1

)(Btk −Btk−1
)] +

1

2

n∑
k=1

[f
′′
(Btk−1

)(Btk −Btk−1
)2]. (51)

We want to show that the second term in equation 51 converges to
1
2

∑n
k=1[f

′′
(Btk−1

)(tk − tk−1)] as n approaches to infinity by using mean squared

technique.

Proof. Let’s define Xn as,

Xn =
∑n

k=1[f
′′
(Btk−1

)(Btk −Btk−1
)2]

and X as,

X =
∑n

k=1[f
′′
(Btk−1

)(tk − tk−1)].

Recall that the mean squared convergence means that the expected value of

squared of the difference between Xn and X tends to zero as n approaches to

infinity. So, we have,

E
[
(Xn −X)2

]
=

E

[(∑n
k=1[f

′′
(Btk−1

)(Btk −Btk−1
)2]−

∑n
k=1[f

′′
(Btk−1

)(tk − tk−1)]
)2
]

= E

[(∑n
k=1 f

′′
(Btk−1

)
(
(Btk −Btk−1

)2 − (tk − tk−1)
))2
]

This expression looks quit complicated, however, we can utilize a simple trick to

make it simpler. Let’s recall,

E


 n∑

k=1

xk

2
 = E

 n∑
k=1

E
[
x2
tk
|Ftk−1

]+2E

 n∑
k=1

k−1∑
j=1

E
[
xtkxtj |Ftk−1

] . (52)

Now, consider

xtk = f
′′
(Btk−1

)
(
(Btk −Btk−1

)2 − (tk − tk−1)
)
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Then put the value of xtk into equation 52, the second term would be zero and we

have,

E


 n∑

k=1

xk

2
 = E

 n∑
k=1

E
[
x2
tk
|Ftk−1

] = E

 n∑
k=1

f
′′2
(
Btk−1

)
V
[
(Btk −Btk−1

)2|Ftk−1

]+0

(53)

Since E
[
(Xn −X)2

]
= E

[(∑n
k=1 xk

)2
]
, we have

E
[
(Xn −X)2

]
= E

 n∑
k=1

f
′′2
(
Btk−1

)
V
[
(Btk −Btk−1

)2|Ftk−1

] (54)

and we know that the variance of the square of the Brownian increments is two

times the square of the length of the interval. As the length of each sub-interval is
t
n

, we can write equation 54 as follows,

E
[
(Xn −X)2

]
= E

 n∑
k=1

f
′′2
(
Btk−1

)
2(tk − tk−1)2

 = 2

(
t

n

)2

E

 n∑
k=1

f
′′2
(
Btk−1

) .
(55)

Now, if we let n tends to infinity, we have

lim
n→∞

E
[
|Xn −X|2

]
= 0 (56)

Therefore, we have proved that Xn → X as n→∞.
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6.2 Wiener Process

We define stochastic process, Xt, as a variable whose value changes over time t

in an uncertain way (Discrete/Continuous Time or Discrete/Continuous Variable)

Definition 3. The Wiener process, Wt, is the stochastic process which fall in the

continuous variable and continuous time category. At initial time, t = 0, the value

for W0 would be zero. For t = T , we have,

WT = (ε0 + ε∆t + ....+ εT−∆t).
√

∆t E(WT ) = 0

V (WT ) = n.∆t = T

WT ∼ N(0, T )

Also, the Wiener process has non-overlapping intervals like Brownian motion. So,

for t1 < t2 < t3, we have (Wt3 −Wt2) and (Wt2 −Wt1) which are independent.

We use these properties of Wiener process where we want to talk about the

standard Brownian motion.

6.3 R-Code

In order to get the predicted value of option prices by our new B-S model, I used

R. I import the value S which is current stock price, K which is strike price, t is

time to expiration, Sigma which is implied volatility, and rFree which is risk free

interest rate. Then I define d1 and d2 with including the third moment. Finally, I

define our new B-S model by C0 which shows the European call option. C0 gives

us the predicted option prices. It includes the function N(di) which is shown by

pnorm. As we explained previously, N(di) is cumulative Normal distribution

function.

For table 2, we are going to use the following R code by considering different

values of sigma in panel B:

S < −255

K < −200; 220; 240; 260; 280

t < −1

Sigma < −0.015

rFree < −0.059

d1 < −(log(S/K) + (rFree+ (Sigma2)/2 + (Sigma3)/6) ∗ t)/(Sigma ∗ sqrt(t))
d2 < −(log(S/K) + (rFree− (Sigma2)/2− (Sigma3)/6) ∗ t)/(Sigma ∗ sqrt(t))
C0 = S ∗ pnorm(d1)−K ∗ exp(−rFree ∗ t) ∗ pnorm(d2)

For table 3, the following R code is used by considering different values of sigma

in panel B:

S < −131.27

K < −114; 115; 145; 142; 110; 118; 150
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t < −1

Sigma < −0.00

rFree < −0.06

d1 < −(log(S/K) + (rFree+ (Sigma2)/2 + (Sigma3)/6) ∗ t)/(Sigma ∗ sqrt(t))
d2 < −(log(S/K) + (rFree− (Sigma2)/2− (Sigma3)/6) ∗ t)/(Sigma ∗ sqrt(t))
C0 = S ∗ pnorm(d1)−K ∗ exp(−rFree ∗ t) ∗ pnorm(d2)

Finally,for table 4, the following R code is used by considering different values of

sigma in panel B:

S < −29.99

K < −20; 22; 20; 35; 25; 26

t < −1

Sigma < −0.89

rFree < −0.07

d1 < −(log(S/K) + (rFree+ (Sigma2)/2 + (Sigma3)/6) ∗ t)/(Sigma ∗ sqrt(t))
d2 < −(log(S/K) + (rFree− (Sigma2)/2− (Sigma3)/6) ∗ t)/(Sigma ∗ sqrt(t))
C0 = S ∗ pnorm(d1)−K ∗ exp(−rFree ∗ t) ∗ pnorm(d2)
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